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An integral treatment based on the K/~rman- Pohlhausen integral relation is proposed for the 
analysis of the buoyancy-induced flows in a porous medium adjacent to horizontal surfaces 
with variable wall temperature. It is shown that a significant improvement of its accuracy is 
possible by matching a compatibility condition on the second derivative of the temperature 
profile at the wall. A comparison of the present approximate solution and the exact solution 
reveals an excellent performance of the present approximate solution procedure. 
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I n t roduct ion  

A great deal of attention has been directed toward the study of 
buoyancy-induced flows within a porous medium in view of its 
applications in both engineering and geothermal systems. For 
example, hot dike complexes in a volcanic region can provide 
the energy source for the heating of ground water that can be 
used for power generation. Thus the study of heat transfer 
characteristics of buoyancy-induced flows in a porous medium 
is essential to assessing and evaluating geothermal resources. 

When the wall temperature of a semi-infinite horizontal 
upward facing plate is kept higher than that of a surrounding 
porous medium, a vertical density gradient is generated within 
the thermal boundary layer over the fiat plate, which then will 
create a longitudinal pressure gradient. If the pressure force is 
greater than the buoyancy force, the fluid moves along the 
horizontal plate so as to relax its pressure. The problem has 
many important applications such as to convective flows above 
the heated bedrock and below the cooled caprock in a liquid- 
dominant geothermal reservoir. 

Recently, Cheng 1 attacked the problem applying the 
K~irman-Pohlhausen integral relation and obtained similarity 
solutions assuming the exponential variation of the wall 
temperature. Neither the agreement of these approximate 
solutions nor the exact solutions obtained by Cheng and 
Chang, 2 however, seems satisfactory. It is the purpose of this 
paper to show that a significant improvement of its accuracy can 
be achieved by matching a compatibility condition on the 
second derivative of the temperature profile at the wall, which is 
implicit in the energy conservation equation in a differential 
form. The convective heat transfer coefficient obtained in this 
study will be quite useful in estimating the cooling rate of 
horizontal bedrocks trapped inan aquifer as well as the heat loss 
rate from underground energy transport and storage systems. 

Analysis 

The physical model and coordinates are indicated in Figure 1. A 
semi-infinite horizontal surface is heated to the temperature 
Tw(x) above the ambient temperature T¢ of the surrounding 
porous medium. The governing equations in the boundary layer 
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coordinates (x, y) are given by 

~-x +~y=O (1) 

au Kofl aT 
ay v 0x (2) 

aT aT 02T u~+v~=~ (3) ay 2 

where: 
K the permeability of the porous medium 
g the acceleration due to gravity 
fl the coefficient of thermal expansion 
v the kinematic viscosity 
x the equivalent thermal diffusivity of the porous medium. 

Equations 1, 2, 3 represent the continuity equation, the 
Darcy's law with the Boussinesq approximation, and the energy 
equation, respectively. The boundary conditions are 

y = 0: v = 0 T = Tw(x ) (4a, b) 

y--.o¢ : u=O T= T~ (4c, d) 

Equation 2 may be integrated across the boundary layer of 
thickness 6, using the boundary conditions given by Equations 
(4a-d), so that 

Kgfl d f~ Uw = v dx ( T -  Te) dy (5) 

Similarly integrating the energy equation (Equation 3) with the 

I 

• • I I  

i 

o 

• I I  

I t  

/ / T w = T e / / 0  

Figure 1 

Y 
i • ,, • 

• • B • • 
m • 

• • 4 • 
• • / e  i • 

• 2 i 0 

• ~ ~ ~ -  

Physical model and coordinates 

Heat and Fluid Flow 



Buoyancy-induced flows in a porous medium: A. Nakayama and H. Koyama 

continuity equation (Equation 1) leads to 

d f f  u(T- Te)dy=- xdT~-Y ,=o (6) 

Now, considering Equation 3 at the impermeable wall gives 
the following auxiliary relation: 

dT w ~2T I 
Uw--=x  ~..2 (7) 

dx ~Y ly=o 

This compatibility condition associated with the temperature 
profile curvature at the wall is not trivial, since the local 
temperature gradient at the wall determines the heat transfer 
rate there. Introducing this auxiliary relation leads to a 
significant improvement of the accuracy of the integral method. 

To seek similarity solutions, a power-law variation is 
prescribed for the wall temperature, namely, 

ATw-- Tw- Te oc x" (8) 

On noting the foregoing relation, Equations 5, 6, and 7 may 
be reduced to the following algebraic equations: 

Kg# Uw = A(n+m) ATw6 
V X 

(2n+ 2m_ l)B uw6 =C ~_ 
x 6 

U w If, .x=ng 
where 

A= f f drl 

D a2f[ 

=VLo 

(9) 

(10) 

(11) 

of 
B = f 2 ( ~ ) f d ~ l  C = - ~ - =  ° (12a, b,c) 

T-Te y 
f01)= ATw r/--~- (12d, e, f) 

The shape factors A through D can be determined as the profiles 
for u/uw and f are specified. Moreover, m is the unknown 
exponent describing the growth of the boundary layer so that 

6 oc x ~ (13) 

Substituting Equation 9 into Equations 10 and 11 yields the 
following two distinct expressions for &3: 

C D 
(Nx) 3 Rax = - (14a) 

(2n+2m-  1)(n+m)AB n(n+m)A 
where 

ga~ ATwx 
Rax=  (14b) 

xv 

The constancy of the right-hand side of Equation 14a indicates 
that 

2 - n  
m = - -  (15) 

3 

The next step is to specify the functional forms for the velocity 
and temperature profiles. The velocity profile may be 
approximated by a second-order polynomial as 

U 
- - =  (1 - ~)2 (16) 
Uw 

and the temperature profile may be given by the following 
simple one-parameter profile family: 

f(~/; ct)= (1 - r/) = (17) 

The shape factors A through D may readily be evaluated by 
substituting Equations 16 and 17 into Equations 12a through 
12d: 

1 1 
A= B= C=ct D=ct(~- 1) (18a, b,c,d) 

l+ct 3+~ 

Substituting the foregoing expressions along with Equation 15 
into the two expressions on the right-hand side of Equation 14a 
yields the following explicit relation between the profile 
parameter ~t and the power-law exponent n for the wall 
temperature variation: 

l+13n 
~t = - -  (19) 

l + n  

Equation 14a with ct given by the foregoing expression finally 
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Figure 2 Local heat transfer results 
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Table 1 Nux/Rax 1/3 

Present Exact Cheng's 
approximation n u m b e r  approximation 

0.5 0.8046 0.8164 0.6436 
1.0 1.1 08 1.099 0.8399 
1.5 1.364 1.351 1.012 
2.0 1.594 1.571 1.169 

gives the expression for the local Nusselt number Nux=  
( -  x/ATw)(~T/~y)[y= o = ~(x/c~) of the present interest as 

Nux/Raxt/3 =I (1  + n)(1 + 13n)2T/3 -_1 (20) 

Results 

Thus the local heat transfer rate is readily calculable from 
Equation 20 for any given exponent n for the wall temperature 

variation. It should, however, be pointed out that the range of n 
for which the problem is physically realistic is restricted to 
1/2~< n~ 2, since both Uw and ~ must increase with respect to x 
(see Equations 9 and 15). 

The values based on Equation 20 are plotted in Figure 2 and 
are also tabulated in Table 1 for a direct comparison with those 
from the exact solution z and the integral method by Cheng. 1 
Agreement between the present approximate solution and the 
exact solution appears to be excellent. The significant 
improvement in its accuracy achieved in this approximate 
procedure is due to the effort made to satisfy the compatibility 
condition associated with the second derivative of the 
temperature profile at the wall, namely, Equation 7. 
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